
AT1-CO2 二氧化碳传感器

产品描述

AT1-CO2二氧化碳气体传感器是一个智能通用型、小型传感器,利用非色散红外(NDIR)原理对空气中存在的CO₂进行探测,具有很好的选择性和无氧气依赖性,寿命长。内置温度补偿;同时具有数字输出与模拟电压输出,方便使用。该传感器是将成熟的红外吸收气体检测技术与精密光路设计、精良电路设计紧密结合而制作出的高性能传感器。

传感器特点

高灵敏度、高分辨率、低功耗 提供UART、模拟电压信号、PWM波形等多种输出方式 响应时间快 温度补偿,卓越的线性输出

优异的稳定性

使用寿命长

抗水汽干扰、不中毒

主要应用

可广泛应用于暖通制冷与室内空气质量监控、工业过程及安全防护监控、农业及畜牧业生产过程监控。

技术指标

表 1

产品型号	AT1-C02		
检测气体	二氧化碳		
工作电压	4.5∼5.5V DC		
平均电流	< 85 mA		
接口电平	3. 3V		
测量范围	0~5%VOL 范围内可选(详见表 2)		
	0.4~2V DC		
输出信号	UART		
	PWM		
预热时间	3min		
响应时间	$T_{90} < 90s$		
工作温度	0~50°C		
工作湿度	0~95%RH (无凝结)		
外形尺寸	$57.5 \times 34.7 \times 16$ mm (L×W×H)		
重量	15 g		
寿 命	>5年		

量程和精度

表 2

气体名称	分子式	量程	精度	备注
		$0{\sim}2000$ ppm		温度补偿
		$0{\sim}5000$ ppm	l (50	温度补偿
二氧化碳	上碳 CO ₂	0~1%VOL	±(50ppm+ 5%读数值)	温度补偿
		0~3%VOL	3%以数阻/	温度补偿
		0∼5%VOL		温度补偿

传感器结构图

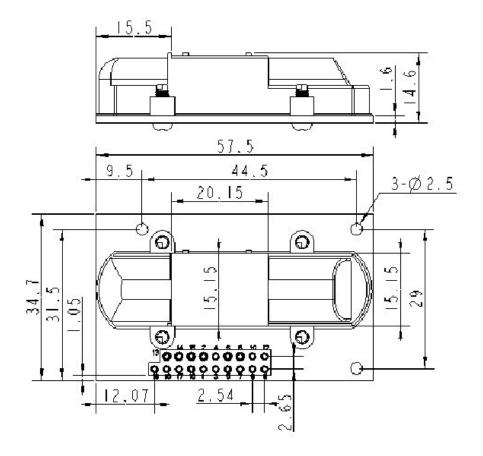


图 1: 传感器结构图

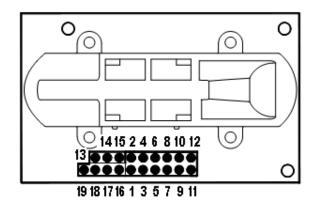


图 2: 管脚定义图

管脚定义

表 3

管脚名称	管脚说明			
Pad1、 Pad15、 Pad17	Vin (电压输入 4.5V~5.5V)			
Pad2、Pad3、 Pad12、Pad16	GND			
Pad4	Vout2 (0.4∼2V)			
Pad5	Vout1 $(0\sim2.5V)$			
Pad6	PWM			
Pad8	HD (校零,低电平7秒以上有效)			
Pad7、Pad9	NC			
Padl1、Padl4、Padl8	UART (RXD) 0~3.3V 数据输入			
Pad10、Pad13、Pad19	UART (TXD) 0~3.3V 数据输出			

应用电路

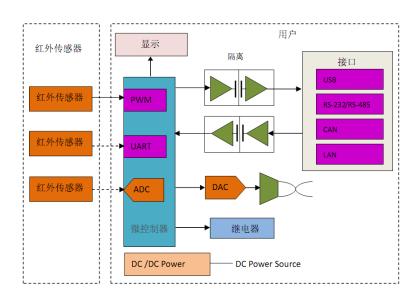


图3:应用电路

说明: 1、模拟电压输出

Vout1输出电压范围可定制,默认0~2.5V,对应气体浓度(0~满量程)

Vout2输出电压范围(0.4~2V),对应气体浓度(0~满量程)

将传感器Vin端接5V,GND端接电源地,Vout2端接ADC的输入端。传感器经过预热时间后从Vout2端输出表征气体浓度的电压值,0.4~2.0V 代表气体浓度值0~满量程。当自检发现故障时,传感器输出电压为0V。

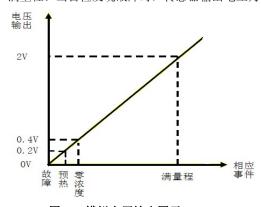


图4: 模拟电压输出图示

2、PWM 输出

以测量范围为 2000ppm 的 PWM 输出为例:

 CO₂浓度输出范围
 0~2000ppm

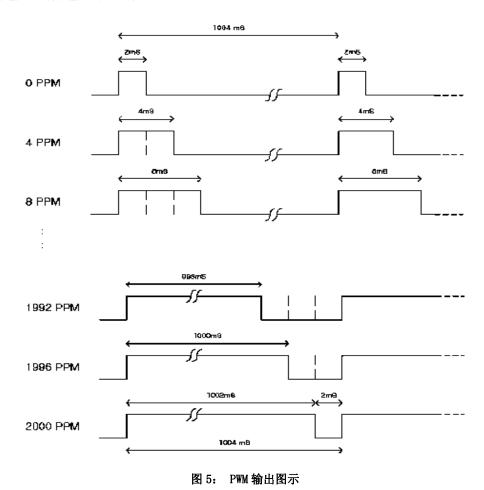
 周期
 1004ms±5%

 周期起始段高电平输出
 2ms(名义上)

 中部周期
 1000ms±5%

 周期结束段低电平输出
 2ms(名义上)

通过 PWM 获得当前 CO2浓度值的计算公式:


$$C_{ppm} = 2000 \times (T_H - 2ms) / (T_H + T_L - 4ms)$$

其中:

 C_{ppm} 为通过计算得到的 ${
m CO}_2$ 浓度值,单位为 ${
m ppm}$;

 T_{H} 为一个输出周期中输出为高电平的时间;

 T_{L} 为一个输出周期中输出为低电平的时间;

3、数字方式

将传感器 Vin 端接 5V,GND 端接电源地,用户通讯接口的 RXD 端接探测器的 TXD,TXD 端接探测器的 RXD。探测器可以直接通过传感器的 UART 接口读出气体浓度值,不需要计算。

3.1 通讯协议

3.1.1 通用设置

表 4

波特率	9600
数据位	8 位
停止位	1 位
校验位	无

3.1.2 命令

每条命令或返回:

包含9字节(字节0~字节8)

起始字节固定为 0xff

命令包含传感器编号(出厂默认值为 0x01)

以校验和结尾(校验和计算方法见 校验和计算)

命令列表

表 5

0x86	读气体浓度值					
0x87	校准传感器 零点 (ZERO)					
0x88	校准传感器 跨度点 (SPAN)					

读气体浓度值

	发送命令									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8		
起始	传感器编	命令	-	-	-	-	-	校验		
字节	号							值		
0XFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79		

传感器返回值

	传感器返回 (例)								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte	
								8	
起始	命令	浓度值高	浓度值低	-	-	-	-	校验	
字节		位	位					值	
0XFF	0x86	0x02	0x60	0x47	0x00	0x00	0x00	0xD1	

气体浓度值 = 浓度值高位 * 256 + 浓度值低位

校准传感器零点

- 1	イの田 4 W									
		发送命令								
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	
	起始	传感器编	命令	-	-	-	-	-	校验	
	字节	号							值	
	0XFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	0x78	

传感器无返回值

校准传感器跨度值

	发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	
起始	传感器编	命令	跨度值高	跨度值低	-	-	-	校验	
字节	号		位	位				值	
0XFF	0x01	0x88	0x07	0xD0	0x00	0x00	0x00	0xA0	

传感器无返回值

3.1.3 校验和计算

校验和 = (取反(字节1+ ······+字节7))+1

例如读气体浓度值:

	发送命令									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8		
起始	传感器编	命令	-	-	-	-	_	校验		
字节	号							值		
0XFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79		

1. 除字节 0 以外的其他字节全部相加

$$0x1 + 0x86 + 0 + 0 + 0 + 0 + 0 = 0x87$$

2. 第一步得到的值取反

$$0xff - 0x87 = 0x78$$

3. 第二部达到的值加1

$$0x78 + 0x01 = 0x79$$

3.2 示例程序

C 语言计算校验和例程

```
char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 8; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

注意事项

- 1、 传感器应定期标定,建议标定周期6个月。
- 2、 不要在粉尘密度大的环境长期使用传感器。
- 3、 请在传感器供电范围内使用传感器。